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GaN materials for electronics
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Energy band-gap =PrL

What is a Semiconductor Energy Bandgap?
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Wide-band-gap semiconductors

Interest of wide-band-gap materials for power electronics
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Much larger voltage blocking with a smaller resistance and size

What is truly unique of llI-Nitrides?
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Case for GaN: Basics of llI-Nitrides “P-L

What is truly unique of llI-Nitrides?

Wurtzite structure

Spontaneous polarization and piezoelectric constants of I11-V nitrides

Fabio Bernardini and Vincenzo Fiorentini
INFM — Dipartimento di Scienze Fisiche, Universita di Cagliari, I-09124 Cagliari, Italy

David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscatoway, NJ, U.S.A.
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Case for GaN: Basics of llI-Nitrides

1. Spontaneous Polarization

Wurtzite structure

(1100) GaN bulk (unstrained)
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Basics of llI-Nitrides

2. Piezoelectric Polarization
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Case for GaN: Basics of llI-Nitrides

Spontaneous and piezo contributions
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What does it do to the band structures?

Non polar materials

Pz
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Case for GaN: Basics of llI-Nitrides

Spontaneous and piezo contributions
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What does it do to the band structures?
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Polarization fields create slopes in the bands!



How to make useful devices
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Uniqueness of lll-Nitrides

Very unique property of Nitrides:

1. Spontaneous and piezoelectric polarization fields

2. Several compounds can be used to form heterostructures
GaN, AIN, AlGaN, InGaN, InAIN, InAlGaN, ScAIN, etc...
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Simple case: AlGaAs/GaAs

AlGaAs/GaAs

Air
20nm n'AIO-3GaO‘7AS

1um i-GaAs




Simple case: AlIGaAs/GaAs “P-

+ Schottky gate => HEMT

n-type intrinsic/p-type

depletion from junction
depletion from Schottky

HEMT Schottly

gate barrier channel

substrate

Sidonors

" two-dimensional
electron gas (2DEG)
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Well designed HEMT: barrier fully depleted (needed for gate control)



Simple case: AlGaAs/GaAs

AlGaAs/GaAs

Vary donor concentration

20 nm n-A|0-3GaO_7AS

1um i-GaAs

Model details
* Uniform doping profile
* No surface states
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2DEG is formed by n-doping the AlGaAs barrier
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GaN polarization: First “naive” picture “P-L

Effect of polarization on creating the 2DEG: “First picture”

30”mi‘A|0.3Gao'7N

Lum i-GaN




GaN polarization: First “naive” picture

Effect of polarization on creating the 2DEG: “First picture”
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GaN polarization: surface states “P-L

No! electrons come from surface and buffer states, which populate the 2DEG channels*

*J. P. Ibbetson; P. T. Fini; K. D. Ness; S. P. DenBaars; J. S. Speck; U. K. Mishra, Appl. Phys. Lett. 77, 250-252 (2000)

AlGaN/GaN with surface traps

P =0, 2DHG comes from ionized surface donor states (Pp)
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GaN polarization: surface states “P-L

AlGaN/GaN with surface traps

Varying AlGaN thickness
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(1) surface donors partially ionized, P, increase, P =0
* At 2nm, P, —=Ns=0, no 2DEG is formed

(2) surface donors are fully ionized, P =0

(1) hole start accumulating at surface, Ps increase



GaN polarization: surface states “P-L

AlGaN/GaN with AIN interlayer

Vary AIN thickness:
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* 1 nminterlayer does not boost the 2DEG concentration, but improves mobility by reducing alloy scattering

* 2DHG forms at AIGaN/AIN interface when AIN is thick



GaN polarization: surface states “P-L
Varying Al composition of the barrier:

Vary barrier composition:
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2DEG density increases with Al composition and saturates as the surface states are fully ionized



GaN polarization: surface states

Vary AlGaN thickness and surface trap level
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Expressions for Ns in GaN =P-L

Simplified analytical description of GaN HEMT: charge control

t, — e®,— Ex t,—AE,+ Ey+ (Er— Ep) =0
‘ \ Et, From Gauss’ law:
edy(x) ‘ E= Q(O'H (x) o nZd) /C(JC)
Using 2D density of states and assuming a
A E.(x) . triangular well: nhz
i E, Er EF—E() — —m* nod
o 2/3
( Inhe’ noy )
o (x) ~
8e(x)v8m*
Nzg
Express n,p analytically and neglect Er dependence on n,p
O 7 (X) total polarization charge e(x) e®. —AE,+E
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2
€(X) absolute electric permittivity Ip e

D. J. C. Wood, Polarization Effects in Semiconductors, 1st ed. Springer US, 2008, ISBN: 978-0-387-68319-5.



Summary: difference between Arsenides and Nitrides

L)

AlGaAs/GaAs
Schott
bgrrc;erky channel substrate
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..... e e I
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" two-dimensional
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Band diagram metal

Charge distribution = ~Faisan

P N,(GaN) 2DEG

i

3 T ~OGan

0
+ l +aGaNI
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o : Fixed charge

Why are these structures important?



Electron mobility =PrL

|
In the presence of an electric field, electrons drift:

(gt

net velocity
) in direction 4. Tce
of field ¢ ?
/\ *
Y \I average | S | A / | 4
/. _Q/ net velocity

| time
Drift velocity

drift _ € Tee

- *
m ce

drift _
vIrift = — i €

fte = electron mobility [em?/V - 5]

Electron mobility: Corresponds to the ease of carrier motion in response to E.
It depends on the strength of the scattering mechanisms.
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Electron mobility =PrL

In the presence of an electric field, electrons drift: yirift 1
€ _ e
i = m
1600 T T
Mobility depends on: 1400 == \ Siat 300 K ]
* doping level 1200 1 \\ elections
 whether carrier is majority or minority-type. & 1000 |
£ \
S wof \
2 “m';_hcnles . H\\\
[ T e _ __——-_\_‘_\_H‘-
0T <] .
at low n: [ \;QN»_ESI_ _
200 ~ - o
*  Mobility is limited by phonon scattering ; pSi f_‘?:_t_-:_T;::ﬂ-Sl
e thusindependent of doping. o ] "
1E+14 1E+15 1E+16 1E+17 1E+18 1E+18 1E+20 1E+21
Doping (cm™)
at high n: o

* Mobility is limited by ionized impurity scattering;

* ltis not a strong function of the type of dopant, but only on its concentration.
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Electron mobility

Increasing temperature and increasing doping
results in reduction of mobility.

Increasing temperature: increases the number of
phonons, which increases the probability that an
electron will be scattered by a phonon.

Increasing doping: each dopant atom can scatter
electrons.

M, (cm?/V — s)

Thus:

higher doping level -> lower mobility
higher temperature -> lower mobility
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Lattice
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Velocity saturation =PrL

The linear relationship between drift velocity and electric field is no longer valid at high fields

Virift
drift _ pe
____________________ . ' 1+ ‘J&

Vsat
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c W,,: optical phonons

R e G EE 2

»
»
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m -
(@)

Velocity saturation in GaN devices: 2.5-3x107 cm/s
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Trade-off between carrier density and mobilityin a 2DEG

Intrinsic trade-off: in a 2DEG increasing n, deteriorates u

6 e e ———
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—_ O (] With AIN interlayer T
) T .
E "-D
o 4l " '
o 3F | -
Bl
L . (.
(7] 2 ™ .‘-‘i . =
= @ .20 0.
i CL OGS .
1 e =®
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1000 2000

M wan (€M2V1s™)

Low sheet resistance (Ry;) requires both high n, and high u

=Pr
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Lateral devices

HEMTs or MOSHEMTs

Schottky
Band diagram metal

2DEG W/

CICRCC XS C I CRC I S CIC O CAC I CACACACCACICICICICACACICXCACACACKCXCICIC) ‘—

GaN

Charge distribution  ~aican

3

Si substrate

0

t/ N,(GaN) 2DEG

“Ogan

3y

*  GaN system: no need for doping (Contrary to AlGaAs/GaAs)
*  Mobilities over 2200 cm?/V-s

*  Large carrier density, over 10'3cm?

1

r

+05an J
+O0iGan

o Fixed charge

*  Carriers are induced by donor-like surface states at the AlGaN surface facilitated by spontaneous

and piezoelectric polarization electric field inside the AlGaN layer
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High Electron Mobility Transistors (HEMTs) =Pi-L

Comparison between MOSFETs and HEMTs

MOSFET HEMT

.
2DEG

OO0 ELEOREE00000L0000 000 <—

GaN

=
Viy=0)=0"~~ Vly) -+

Vpg L

Due to the 2DEG:

* Superior mobility

* Higher frequency

* Lower noise figure

* If GaN: higher power density

Mobility of the inverter channel is low
* Electrons propagate in a doped medium

Enhancement-mode device: Depletion-mode device:

normally-off operation normally-on operation
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What can we make with HEMTs “P-L

RF devices: high frequency and high output power

Latera”y-scaled IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 6, JUNE 2015
| self-aligned-gate

G
A Ultrahigh-Speed GaN High-Electron-Mobility

SiN, by el Zj:g’cy,;d;’fgi‘;x;;i‘;’jw‘;"g'°| Transistors With f7/ fmax of 454/444 GHz

Yan Tang, Keisuke Shinohara, Senior Member, IEEE, Dean Regan, Andrea Corrion, Member, IEEE,

3 - David Brown, Member, IEEE, Joel Wong, Adele Schmitz, Helen Fung,
vert’ca”}"sca’ed AIN/GaN/ Samuel Kim, and Miroslav Micovic, Member, IEEE

3D n*-GaN - 2DEG contact | |Alo0sGaos.N DH-HEMT epi

* Barrier thickness: 3.5 nm 600 100__ 200 300 400 GHz = {7 - fnax
I .. S - |- -2 LAV N,
[ GaN-HEMTs |
* ns=1.5x10*3 cm? - Lateral L, scaling | 2% ]
500 |- - - 8
T - | Vertical scaling & * ~ 1
*  mobility (u) of 1100 cm? /V:s [ | Parasitic redugtion x This work H
[ * \3D contact to 2DEG [}
* Si-doped n*-GaN ohmic (7x10% cm3): T:ET e 3 % . o™ ® \ o |Reduced g, &C,, |
to laterally contact to 2DEG in the GaN channel Q 300 o O ° Self-aligned gate & ]
5 i X Top barrier scaling -
* ultra-short gate length of 20nm £ [ ? O o
%= 200} .
. . - é) (880 8 *  This work ]
* gate-source and gate-drain separation of 70nm : 0 5 ® Previous work |
. . 100 | 5 Other groups H
* fT / fmax as high up to 454/518GHz (not on the same device) i 20 55 S oo
° - 0 R (" Y Y BT R o VA IO YT LU RO S P )
However, Vbr = 10V 0 100 200 300 400 500
fT (GHz)

HRL laboratories:

Shinohara et al., [EDM 2011

Shinohara et al., IEEE IEDM, Dec. 2012

Tang etal., IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 6, JUNE 2015



What can we make with HEMTs

=PrFL

Lateral power devices: high voltage and output power, at high switching frequency

Technologies involved in making a high performance power devices

SIi0, (3)

$i0, (2) )
L S A\

[11IMEC, “Perspectives for disruptive 200 mm/8-inch GaN power device and GaN-IC technology,” SEMICON Europa 2018. [[3] Y. Lu, Q. Jiang, Z. Tang, S. Yang, C. Liu and K. J. Chen,

GaN channel

Appl. Phys. Express 8, 064101 (2015).

at.com/product/epitaxial/

P-GaN A iGanbarrier

{ate metal
field plate

G

e
AIGaN/GaN

[4]

Hole injection portion A

Source
electrode

Hole injection electrode

*

Gate H
electrode M

ntric
type
Second nitride layer (AlGaN)

First nitride layer (GaN)

Substrate

Substantially same potentic.

Drain
electrode

Buffer

Si(111)

Passivation

[4] https://industrial.panasonic.com/kr/products/semiconductors/powerics/ganpower
[5] hitps://compoundsemiconductor.net/article/?9114-heat-sinking-gan-on-silicon-the-substrate-removal-challenge.html
[6] https://www.researchgate.net/post/Determination_of_the_lattice_parameter_of_the_ GaN_AIN_layers_of_a_superlattice_from_TEM _images

[7] http://en.enkris.com/cp/html/231.himl

Leakage Current Density(A/em?)

5 |-V data for 10 paints are plotied.

= Leakage Current Density V. 4
.| ~3e-6 Alcm? @600V //'
r

8] http:/ /www.ntt-
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